Documente online.
Zona de administrare documente. Fisierele tale
Am uitat parola x Creaza cont nou
 HomeExploreaza
upload
Upload




Accuracy Comparison for REAL arithmetic

software


Accuracy Comparison for REAL arithmetic

BP 7.0 Turbo Pascal Library

versus

BP 7.0 Runtime Library Update 1.2



Test of basic arithmetic with FUN1_TST. 10,000,000 random trials per function

Limit of relative error for full 40 bit accuracy is 9.094947022e-13.

BP 7.0 RTL BP 7.0 RLU 1.0

% wrong max. rel. error % wrong max. rel. error

ADD 0.0000% 9.094837432e-13 0.0000% 9.094820930e-13

SUB 0.1571% 9.155430759e-13 0.0000% 9.094905407e-13

MUL 0.0000% 8.459999740e-13 0.0000% 9.089090757e-13

DIV 0.0000% 9.093448608e-13 0.0000% 9.093327167e-13

Short-MUL * 0.0000% 9.094682364e-13 0.0000% 9.094466215e-13

* Short-MUL is a multiplication where one of the operands carries only 16

bits of precision (the last 24 mantissa bits are zero).

Test of higher math functions with ELEFUNT test programs. 1,000,000 random

trials per function test.

MRE = maximum relative error

RMS = root mean square relative error (average error)

Errors reported by ELEFUNT test programs tend to be larger than the actual

error of the routines as compared to higher precision routines (coprocessor).

This is due to the nature of the tests, which are based on functional

identities. The additional computations in testing the identities cause

additional round-off errors.

BP 7.0 RTL BP 7.0 RLU 1.0

% wrong MRE RMS % wrong MRE RMS

DSQRT Test1 9.5168% 1.28622e-12 3.55691e-13 0.0000% 0.00000e+00 0.00000e+00

Test2 0.0004% 1.81880e-12 3.63514e-15 0.0000% 0.00000e+00 0.00000e+00

DSIN Test1 48.5711% 7.27690e-12 1.23904e-12 38.4640% 2.64505e-12 7.22852e-13

Test2 84.1128% 4.11862e-04 4.11889e-07 44.0276% 8.00614e-09 8.04878e-12

* Test3 91.4008% 9.81763e-07 2.28067e-09 42.9703% 4.31878e-11 8.08930e-13

DATAN Test1 18.7838% 1.81897e-12 5.36074e-13 11.1927% 1.81897e-12 4.11701e-13

Test2 63.1259% 6.66016e-12 1.91192e-12 20.3286% 1.82093e-12 5.74504e-13

Test3 70.2866% 4.27213e-12 1.38748e-12 31.3874% 3.33085e-12 7.80409e-13

Test4 64.5424% 7.27474e-12 2.87544e-12 42.5229% 3.63782e-12 9.16674e-13

DEXP Test1 51.1003% 4.86911e-12 1.12152e-12 29.3751% 2.93224e-12 7.09432e-13

Test2 99.4743% 6.14647e-11 2.34142e-11 30.0348% 2.95769e-12 7.24600e-13

Test3 99.7909% 6.09032e-11 2.82847e-11 30.5228% 2.94201e-12 7.30898e-13

DLOG Test1 99.9991% 1.00000e+00 1.10905e-02 39.8793% 3.46234e-12 8.16947e-13

Test2 92.8802% 3.87388e-11 5.31959e-12 38.5649% 3.63262e-12 8.65898e-13

** Test3 73.2293% 2.84949e-11 2.72609e-12 62.3653% 5.44522e-12 1.36790e-12

Test4 22.3294% 1.81898e-12 6.51330e-13 11.5519% 2.32351e-12 4.31119e-13

* test of cosine function

** test of LOG10 function, here simulated by Ln(10) * Ln(X)

Comparison of the results returned by the higher math functions of the REAL

arithmetic software routines with the results returned by a math coprocessor

(Intel RapidCAD). 10,000,000 uniformly distributed arguments from the stated

interval were used to test each function. Note that measuring the error in

ULPs is a more accurate metric than simply measuring the relative error. An

ideal function realization would have an error of exactly 0.5 ULPs.

BP 7.0 RTL BP 7.0 RLU 1.0

interval % wrong ULP error % wrong ULP error

EXP -80.0 .. 80.0 94.6121% -68.4469 .. 67.5848 11.7631% -1.4265 .. 1.4454

LN 0.001 .. 20.0 90.6081% -161855. .. 96518.0 37.1437% -1.8061 .. 2.1469

SIN -pi/2 .. pi/2 56.9757% -592880. .. 159489. 8.1556% -1.2619 .. 0.9408

COS -pi/2 .. pi/2 76.4614% -738834. .. 1.61904 * 18.7306% -6914048 .. 1.3582

ATAN -20.0 .. 20.0 33.9098% -4.4094 .. 2.06105 40.5580% -1.7263 .. 1.2855

%wrong are those cases where the result returned by the REAL arithmetic

software routines differ from the result returned by the coprocessor

and rounded to the precision of the REAL type.

* the high error in the COS routine is caused by the loss of accuracy

in the argument reduction. Loss of accuracy in the reduction process

for the SIN and COS functions can only prohibited at a relatively

high cost.


Document Info


Accesari: 920
Apreciat: hand-up

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site


in pagina web a site-ului tau.




eCoduri.com - coduri postale, contabile, CAEN sau bancare

Politica de confidentialitate | Termenii si conditii de utilizare




Copyright © Contact (SCRIGROUP Int. 2024 )