INTEGRALI INDEFINITI
Proprietą degli Integrali:
D [ f(x) dx] = f(x)
d [ f(x) dx] = f(x) + k
d f(x) = f(x) + k
k f(x) dx = k f(x) dx k = costante
[f1(x) + f2(x)] dx = f1(x) dx + f2(x) dx
xn dx = [1/(n+1)] xn+1 + k (integrale di potenza) [f(x)]n f'(x) dx = [1/(n+1)] [f(x)]n+1 + k
n = 1 x dx = ½ x2 + k
n= -1 (1/x) dx = ln |x| + k
n = 0 1 dx = x + k
x) dx x3) + k (integrale di radice) [f'(x)/f(x)] dx = ln |f(x)| + k
Integrali goniometrici:
cos x dx = sen x + k sen x dx = -cos x +k
-sen x dx = cos x + k
cos f(x) f'(x) dx = sen f(x) + k
sen f(x) f'(x) dx = -cos f(x) + k
(1/cos2 x) dx (1+tg2 x) dx = tg x + k [f'(x)/cos2 f(x)] dx = tg f(x) + k
(1/sen2 x) dx (1+cotg2 x) dx = -cotg x + k [f'(x)/sen2 f(x)] dx = -cotg f(x) + k
1-x2) dx = arcsen x + k [f'(x)/(1/ 1-[f(x)]2) dx = arcsen f(x) + k
1-x2) dx = -arccos x + k [f'(x)/(1/ 1-[f(x)]2) dx = -arccos f(x) + k
(1+x2) dx = arctg x + k [f'(x)/(1+[f(x)]2) dx = arctg f(x) + k
(1+x2) dx = -arccotg x + k [f'(x)/(1+[f(x)]2) dx = -arccotg f(x) + k
Integrali esponenziali:
ex dx = ex + k ef(x) f'(x) dx = ef(x) + k
ax dx = ax (loga e) + k = (ax/ln a) + k af(x) f'(x) dx = af(x) (loga e) + k = [af(x)/(ln a)] + k
ax (ln a) dx = ax + k af(x) f'(x) (ln a) dx = af(x) + k
(1/x2+m2) dx = (1/m) arctg (x/m) + k
[1/(x+k)2+m2] dx = (1/m) arctg [(x+k)/m] + c c = costante
|