Documente online.
Zona de administrare documente. Fisierele tale
Am uitat parola x Creaza cont nou
 HomeExploreaza
upload
Upload




Sieć FDDI

Poloneza


Sieć FDDI.

FDDI (Fiber Distributed Data Interface) jest popularnym rodzajem sieci lokalnej, która ma większą przepływność niż Ethernet. FDDI jest standardem dla kabli światłowodowych (najczęściej używa się przewodów wielomodowych). Zapewnia transmisję z szybkością 100 Mbit/s, wykorzystując topologię podwójnego pierścienia. Pozwala na przyłączenie do 500 węzłów przy maksymalnej długości 100 km. Podwójny przeciwbieżny obieg danych zapewnia redundancję informacji, a co za tym idzie - odporność na awarie. W razie uszkodzenia lub zerwania przewodu pierścień rekonfiguruje się automatycznie. Niektóre ze stacji (DAS - Dual Attached Station) przyłączone są do pierścienia dwukrotnie, inne (SAS - Single Attached Station) jeden raz - przez koncentrator.



W sieciach ogólnie dostępnych można się liczyć ze zjawiskiem nasyceniem pasma przenoszenia.

Własności.

Sieć FDDI jest oparta na technice sieci-pierścienia z krążącym znacznikiem o szybkości 100Mb/s mająca własność autokorekcji (self-healing). Jeżeli stacja chce rozpoczą& 20320d317u #263; transmisję zabiera znacznik (pochłanianie znacznika) i oddaje go dopiero po zakończeniu transmisji. Specjalny mechanizm nadzoruje aby stacja nie przetrzymywała znacznika zbyt długo. Możliwe jest nadanie przez administratora priorytetów stacjom transmitującym duże ilości danych. Sieć FDDI ma strukturę pętli, w której transmisja zaczyna się z jednego komputera, przebiega przez wszystkie pozostałe i kończy się tam gdzie się zaczęła. Stacja bezpośrednio podłączona do FDDI działa jak repeater. W sieci może być jednocześnie przesyłanych wiele ramek. Jeżeli stacja zwróci znacznik w czasie, gdy ramka ciągle znajduje się w drodze - inna stacja może podjąć transmisję. Mechanizm zarządzający, tzw. zarządzanie stacyjne pozwala administratorowi monitorować sieć FDDI, wydzielać uszkodzone węzły i prowadzić routing.

Rys. 23.Awaria w sieci FDDI

Rys. 24.A

Jedną z ciekawych własności FDDI jest jej zdolność do wykrywania i korygowania błędów - sprzęt jest w stanie automatycznie obsłużyć błędy. Aby to zapewnić osprzęt FDDI używa dwóch przeciwbieżnych pierścieni. Pierścienie FDDI są nazywane przeciwbieżnymi, gdyż w każdym z nich pakiety wędrują w przeciwną stronę. Dopóki nie wystąpi błąd dopóty sieć FDDI nie potrzebuje obydwu pierścieni. Gdy interfejs FDDI wykryje, że nie może się porozumieć z sąsiednim komputerem wykorzystuje drugi pierścień do przesyłania danych. Sprzęt FDDI automatycznie wykorzystuje przeciwbieżny pierścień do utworzenia zamkniętej pętli.

Warstwy FDDI i format ramki.

W FDDI wyróżnia się nieco inne warstwy niż w modelu OSI. Przedstawia to rysunek.

Warstwy modelu FDDI

Logical Link Control

Sterowanie dostępem do medium - MAC

adresowanie

konstrukcja ramki

sterowanie znacznikiem

PROTOKÓŁ WARSTWY FIZYCZNEJ

kodowanie/dekodowanie

synchronizacja bitowa

zestaw symboli

WARSTWA FIZYCZNAZALEŻNA

OD MEDIUM

połączenia optyczne

połączenia skrętką ekranowaną

złącza i kable

Pole

Długość w jed.. 4 bit

Zawartość

PA

4 lub więcej

Preambuła

SD

Znacznik początku

FC

Kontrola ramki

DA



4 lub 12

Adres odbiorcy

SA

4 lub 12

Adres nadawcy

RI

0 do 60

Inf . o trasowaniu

DATA

0 lub więcej

Dane

FCS

Sekwencja kontrolna

ED

Znacznik końca

FS

3 lub więcej

Status ramki

Maksymalna długość wynosi 4500 bajtów.

Zaletą jest duży rozmiar ramki. Informacja w nagłówku zajmuje co najwyżej kilkaset bajtów a zatem pojedyncza ramka może zawierać 4kB danych użytkownika.

Podobnie jak w przypadku innych technik, każdy komputer przyłączony do sieci FDDI ma przypisany adres, a każda ramka zawiera pole adresu odbiorcy. Jednak w celu zapewnienia większej elastyczności sieci FDDI i w celu zapewnienia standardowego sposobu połączenia dwóch pierścieni FDDI projektanci zezwolili na stosowanie wielu różnych formatów ramek. Ramka zawiera także krótkie pole związane z wyznaczaniem trasy. Nadawca może użyć tego pola w celu wskazania, że ramkę należy najpierw przesłać do punktu połączenia, a następnie do odbiorcy znajdującego się w innym, przyłączonym pierścieniu.

Tryby transmisji w FDDI.

Właściwości FDDI, określenie przez technikę token passing oraz zmienna długość pakietów nie pozwalają na zachowanie równomierności przesyłu danych, niezbędnej przy przesyłaniu video w czasie rzeczywistym. Problemy te rozwiązuje się różnymi metodami. W FDDI stosuje się obecnie trzy tryby transmisji: asynchroniczny i synchroniczny (stosowane w standardowych rozwiązaniach FDDI) oraz izochroniczny (w FDDI-II).

Połączenie asynchroniczne - pierścień asynchroniczny wykorzystuje technikę przekazywania znacznika który może przejąć dowolna stacja, uzyskując tym samym dostęp do sieci. Zakłada się tutaj brak priorytetów, na czym cierpi transmisja danych uzależnionych od prędkości. Jedną z metod rozwiązania tego problemu jest buforowanie nadchodzących pakietów.

Połączenie synchroniczne - synchroniczny tryb pracy pierścienia z przekazywaniem    znacznika pozwala na nadawanie priorytetu danym uzależnionym od prędkości transmisji co pozwala im docierać w odpowiednim wymaganym czasie. Tryb ten wymaga dodatkowych elementów sprzętowych i programowych.

Każdej stacji może być przydzielony czas na transmisję ramek synchronicznych, zwany czasem alokacji synchronicznej. Dla sieci jest definiowany także parametr TTRT (Target Token Rotation Time) - czas przechodzenia znacznika przez pierścień. Uwzględnia się w nim sumę czasów przydzielonych dla każdej stacji na transmisję synchroniczną oraz czas niezbędny do okrążenia pierścienia przez przewidywaną największą ramkę. Stacja rejestruje ile czasu upłynęło od chwili kiedy ostatnio otrzymała znacznik. W chwili ponownego dotarcia znacznika stacja zapisuje, ile czasu upłynęło i może wysyłać ramki przez przypisany jej czas transmisji. Jeśli zarejestrowana ilość czasu jest mniejsza od określonego przez parametr TTRT, to przez pozostały czas stacja może nadawać ramki asynchroniczne.

Połączenia izochroniczne - tryb ten polega na udostępnianiu, w regularnych odstępach czasu, specjalnego kanału komunikacyjnego o ustalonej szerokości pasma.

Relacja między modelem OSI a FDDI.

Najwyższa warstwa FDDI lokuje się w części sterowania dostępem do medium, warstwy łącza. Tuż ponad nią zaznaczono warstwę sterowania łączem logicznym działająca jako most transferujący pakiety pomiędzy siecią Ethernet a Token Ring. Na rysunku zaznaczono standard zarządzania stacjami (SMT) odpowiedzialny za konfigurację pierścienia, inicjalizację, dołączanie i odłączanie stacji oraz prowadzenie diagnostyki.

Obsługa błędów.

Wszystkie stacje w sieci są odpowiedzialne za monitorowanie operacji przekazywania znacznika i inicjowanie działania, jeśli wystąpi błąd. Błąd taki może objawiać się przedłużonym okresem nieaktywności w pierścieniu (co wskazuje na zgubienie znacznika) lub przedłużonym czasem transmisji danych bez znacznika (co wskazuje na nie zakończoną ramkę).

Jeśli stacja wykryje jedną z wymienionych sytuacji, inicjuje procedurę przejmowania znacznika. Stacja wysyła wówczas ciąg ramek kontrolnych, zwanych ramkami roszczeniowymi (claim frames), z których każda zawiera proponowaną wartość współczynnika TTRT. Gdy do tej stacji dotrze ramka wysłana przez inną stację, nastąpi porównanie w nich wartości TTRT. Jeśli wartość ta jest większa od wartości proponowanej przez stację to stacja kontynuuje wysyłanie ramek roszczeniowych. W przeciwnym razie przystąpi do transmisji ramek takich jak otrzymała. Jeśli wartości TTRT są równe to rozstrzygnięcie następuje na podstawie adresów stacji. W ostateczności stacja z najmniejszą wartością TTRT otrzyma ramkę, którą wysłała i wygra proces rywalizacji o znacznik.

W tym momencie rozpoczyna się faktyczne inicjowanie pierścienia. Zwycięska stacja przejmuje znacznik zawierający przez nią wartość TTRT. Pozostałe stacje dowiadują się, że nastąpiło zainicjowanie pierścienia, ponieważ uprzednio otrzymywały zamiast znaczników ramki roszczeniowe. Każda stacja zachowuje ustaloną wartość TTRT, wykonuje procedury inicjujące i przekazuje znacznik do następnej stacji. Ramki będą mogły być wysyłane dopiero wtedy, gdy znacznik okrąży cały pierścień.

Jeśli w sieci wystąpi poważna awaria, np. rozerwanie pierścienia, to zostanie uruchomiona specjalna procedura nawigacyjna. Gdy stacja wysyłająca ramki roszczeniowe stwierdzi, że nie powróciły one po określonym czasie, to uruchomi nową procedurę wysyłającą ciąg ramek nawigacyjnych. Jeśli stacja otrzyma ramki nawigacyjne od innej stacji, to przestaje wysyłać swoje własne i zacznie retransmitować odebrane. Ramki nawigacyjne wysyłane przez stację, znajdującą się zaraz po awarii po przerwie w pierścieniu, przejdą przez wszystkie stacje wskazując w ten sposób przerwę w pierścieniu i umożliwią naprawę awarii. Jeśli do stacji dotrze wysłana przez nią ramka nawigacyjna, to stacja ta uznaje, że pierścień został przywrócony i uruchomi procedurę przejmowania znacznika.

FDDI-II.

Standard ten opracowany został dla sieci, w których przesyłane są sekwencje video w czasie rzeczywistym i inne dane bez opóźnień transmisji. Jeżeli sieć ma pracować jako FDDI-II to wszystkie węzły sieci muszą posiadać odpowiedni interfejs.

FDDI-II dokonuje podziału pasma na specjalne przydzielane kanały. Dzięki technice multipleksowania możliwe jest zagwarantowanie właściwej obsługi ruchu pomiędzy stacjami multimedialnymi. Można stworzyć do 16 kanałów, pozwalających na transmisję z prędkością od 6,144 Mbit/s do 99,072 Mbit/s. Przyczyna takiego rozrzutu tkwi w tym, że szerokość pasma przydziela się określonej stacji zależnie od potrzeb. Każdy z kanałów może zostać jeszcze podzielony, w efekcie czego dostępnych jest 96 oddzielnych strumieni danych (64 Kbit/s). Tak utworzone kanały mogą realizować transmisję w trybie asynchronicznym lub izochorycznym. Przydzielanie kanałów następuje na podstawie priorytetów.

Porównanie LSK



FDDI

Ethernet

Token Ring

Topologia logiczna

podwójny pierścień

szyna

pojedynczy pierścień

Topologia fizyczna

półpierścień, gwiazda,

gwiazda hierarchiczna

szyna, gwiazda

hierarchiczna

półpierścień, gwiazda

Medium

światłowód, skrętka

światłowód, skrętka,

kabel koncentryczny

światłowód, skrętka

Szybkość

100 Mb/s

10 Mb/s

4 lub 16 Mb/s

Metoda dostępu do medium

Timed-token

passing

CSMA/CD.

Token passing

Przyjęcie znacznika

pochłonięcie

zmiana bitu

znacznik ramka

Zwolnienie znacznika

po transmisji

po odbiorze (4)

lub po transmisji (16)

Liczba komunikatów w sieci

wiele

pojedyncze

wiele




Document Info


Accesari: 3187
Apreciat: hand-up

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site


in pagina web a site-ului tau.




eCoduri.com - coduri postale, contabile, CAEN sau bancare

Politica de confidentialitate | Termenii si conditii de utilizare




Copyright © Contact (SCRIGROUP Int. 2025 )