Documente online.
Zona de administrare documente. Fisierele tale
Am uitat parola x Creaza cont nou
 HomeExploreaza
upload
Upload




Нелинейная связь (curvilinear relationship)

Rusa


Нелинейная связь (curvilinear relationship)

Связь двух &# 24324m122y 1087;еременных (традиционно обозначаемых буквами X и Y) можно обнаружить на диаграмме рассеивания, точками к-рой представлены пары оценок каждого участника исслед. X и Y линейно связаны, если точки на диаграмме рассеивания образуют конфигурацию, для к-рой линией наилучшего соответствия будет прямая. X и Y имеют Н. с., если линией наилучшего соответствия для конфигурации точек на диаграмме рассеивания будет кривая. На рис. 2 и 3 показаны линейные связи, а на рис. 4 и 5 - нелинейные связи. На каждом рисунке изображена линия наилучшего соответствия.



Рис. 2. Положительная линейная связь

Рис. 3. Отрицательная линейная связь

На рис. 2 показаны две переменные, между к-рыми существует положительная линейная связь. Когда X увеличивается, Y имеет тенденцию тоже увеличиваться. Между ростом и весом тела человека имеет место положительная линейная связь: более высокие в среднем и весят больше. На рис. 3 изображена отрицательная линейная связь между двумя переменными. Когда X увеличивается, Y имеет тенденцию уменьшаться. Отрицательная линейная связь обнаруживается между возрастом и количеством ошибок в арифметическом тесте: старшие дети имеют тенденцию делать меньше арифметических ошибок по сравнению с младшими. На рис. 4 Y достигает максимума при средних значениях X. Такая связь имеет место между уровнем тревожности и скоростью печатания на машинке, показываемой в соотв. тесте: люди с низкой тревожностью не мотивированы печатать как можно быстрее, а высокая тревожность других мешает им делать это даже при выраженной мотивации. На рис. 5 показан противоположный криволинейный паттерн. Значения Y минимальны при средних значениях X. Такую связь можно обнаружить между физ. привлекательностью человека и тем, как часто на него обращают внимание др. люди: чаще всего объектом внимания других, по-видимому, становятся очень привлекательные и крайне непривлекательные люди.

Рис. 4. Нелинейная связь

Рис. 5. Нелинейная связь

Наиболее часто используемый коэффициент корреляции - коэффициент корреляции произведения моментов Пирсона (r) - показывает направление и силу линейной связи между двумя переменными. Переменные, связанные нелинейно, имеют низкую корреляцию Пирсона. Этот коэффициент корреляции будет указывать на слабую связь переменных в том случае, когда между ними может иметь место сильная Н. с. В качестве показателя Н. с. используется такая специальная мера корреляции, как корреляционное отношение ( ). Значения переменной Y можно предсказать по значениям переменной X, используя уравнение регрессии. Если X и Y связаны линейно, уравнение регрессии тж будет линейным (уравнением прямой). Однако линейное уравнение плохо подходит для описания Н. с.; в этом случае оно не будет давать точных предсказаний. Уравнения для линий регрессии, изображенных на рис. 2-5, выглядят следующим образом:

рис. 2. Y = 0,94 Х - 0,08

рис 3. Y = -0,91 Х + 13,98

рис. 4. Y = 2,56 Х - 0,15 Х2 - 3,69

рис. 5. Y = -2,39 Х + 0,19 Х2 + 13,10

См. также Корреляционные методы, Статистический вывод

М. Эллин


Document Info


Accesari: 1109
Apreciat: hand-up

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site


in pagina web a site-ului tau.




eCoduri.com - coduri postale, contabile, CAEN sau bancare

Politica de confidentialitate | Termenii si conditii de utilizare




Copyright © Contact (SCRIGROUP Int. 2024 )