ALTE DOCUMENTE
|
|||||||||
Множественная регрессия (multiple regression)
М. p. - ме 22422v2110w 1090;од многомерного анализа, посредством к-рого зависимая переменная (или критерий) Y связывается с совокупностью независимых переменных (или предикторов) X посредством линейного уравнения:
Y' = а + b1Х1 + b2Х2 + ... + bkXk.
Коэффициенты регрессии или, по-другому, весовые коэффициенты b обычно определяют методом наименьших квадратов, минимизируя сумму квадратов отклонений фактических значений зависимой переменной от соотв. значений.
При «пошаговом» («stepwise») подходе переменные добавляются (или удаляются) по одному за раз к (из) совокупности независимых переменных до тех пор, пока изменения не становятся статистически незначимыми (или значимыми). Кроме того, совокупность переменных может добавляться (или удаляться) в целях оценки их вклада в множественную корреляцию; в этом случае для определения статистической значимости их эффекта применяется F-критерий.
М. р. широко применяется для решения следующих задач.
1. Получение наилучшего линейного уравнения прогноза.
2. Контроль за смешиванием переменных (факторов).
3. Оценка вклада определенной совокупности переменных.
4. Объяснение сложного на вид многомерного комплекса взаимосвязей.
5. Проведение дисперсионного и ковариационного анализов посредством кодирования уровней независимых переменных.
См. также Множественная корреляция, Методы многомерного анализа
Б. Фрухтер
|