Documente online.
Zona de administrare documente. Fisierele tale
Am uitat parola x Creaza cont nou
 HomeExploreaza
upload
Upload




Геометрична інтерпретація задачі лінійного програмування

Ucraineana




Розгляне& 737f54h #1084;о на площині х1Оx2 сумісну систему лінійних нерівностей:

(2.9)

ai x ai x bi (= 1, 2, ,т). Умови невід’ємності

ai x ai x ai x bi (i  j j j

n; тоді кожна нерівність визначає півпростір n-вимірного простору з граничною гіперплощиною аi x ai x ai x ainxn bi (= 1, 2, ,т). Кожному обмеженню виду (2.9) відповідають гіперплощина та напівпростір, який лежить з одного боку цієї гіперплощини, а умови невід’ємності — півпрос­тори з граничними гіперплощинами хj j = 1, 2, 3, , n).

Якщо система обмежень сумісна, то за аналогією з тривимірним простором вона утворює спільну частину в n-вимірному просторі — опуклий багатогранник допустимих розв’язків.

кож ної з яких визначається значенням параметра Z.

Розгляне& 737f54h #1084;о геометричну інтерпретацію задачі лінійного програмування на прикладі. Нехай фермер прийняв рішення вирощувати озиму пшеницю і цукрові буряки на площі 20 га, відвівши під цукрові буряки не менше як 5 га. Техніко-економічні показники вирощування цих культур маємо у табл. 2.3:

max Z x x (2.10)

x x (2.11)

x x (2.12)

x x (2.13)

x (2.14)

x x (2.15)

Область допустимих розв’язків цієї задачі дістаємо так. Кожне обмеження, наприклад х1 + х2 20, задає півплощину з граничною прямою х1 + х2 = 20. Будуємо її і визначаємо півплощину, яка описується нерівністю х1 + х2 20. З цією метою в нерівність хх2  20 підставляємо координати характерної точки, скажімо, х1 = 0 і х2 = 0. Переконуємося, що ця точка належить півплощині х1 + х2  20. Цей факт на рис. 2.2 ілюструємо відповідною напрямленою стрілкою. Аналогічно будуємо півплощини, які відповідають нерівностям (2.11)—(2.15). У результаті перетину цих півплощин утворюється область допустимих розв’язків задачі (на рис. 2.2 — чотирикутник ABCD). Цільова функція Z x x являє собою сім’ю паралельних прямих, кожна з яких відповідає певному значенню Z. Зокрема, якщо Z = 0, то маємо 0,7х1 + х2 = 0. Ця пряма проходить через початок системи координат. Коли Z = 3,5, то маємо пряму 0,7х1 + х2 = 3,5.


Document Info


Accesari: 5349
Apreciat: hand-up

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site


in pagina web a site-ului tau.




eCoduri.com - coduri postale, contabile, CAEN sau bancare

Politica de confidentialitate | Termenii si conditii de utilizare




Copyright © Contact (SCRIGROUP Int. 2025 )