Tranzistorul bipolar - test
|
Figura 1 prezinta simbolul unui |
Figura 1 |
|
a) 313f57d tranzistor bipolar tip pnp; b) 313f57d tranzistor bipolar tip npn;CORECT c) 313f57d tranzistor cu efect de camp cu canal n; d) 313f57d tranzistor cu efect de camp cu canal p; |
|
Figura 2 prezinta simbolul unui |
|
Figura 2 |
|
a) 313f57d tranzistor bipolar tip pnp; CORECT b) 313f57d tranzistor bipolar tip npn; c) 313f57d tranzistor cu efect de camp cu canal n; d) 313f57d tranzistor cu efect de camp cu canal p; |
|
Un tranzistor bipolar care lucreaza in regiunea activa normala are: |
|
a) 313f57d ambele jonctiuni polarizate direct; b) 313f57d ambele jonctiuni polarizate invers; c) 313f57d jonctinea baza-emitor polarizata direct si jonctinea baza-colectotor polarizata invers; CORECT d) 313f57d jonctinea baza-emitor polarizata invers si jonctinea baza-colectotor polarizata direct. |
|
Un tranzistor bipolar care lucreaza in regiunea de saturatie are: |
|
a) 313f57d ambele jonctiuni polarizate direct; CORECT b) 313f57d ambele jonctiuni polarizate invers; c) 313f57d jonctinea baza-emitor polarizata direct si jonctinea baza-colectotor polarizata invers; d) 313f57d jonctinea baza-emitor polarizata invers si jonctinea baza-colectotor polarizata direct. |
|
Un tranzistor bipolar care lucreaza in regiunea de blocare are: |
|
a) 313f57d ambele jonctiuni polarizate direct; b) 313f57d ambele jonctiuni polarizate invers; CORECT c) 313f57d jonctinea baza-emitor polarizata direct si jonctinea baza-colectotor polarizata invers; d) 313f57d jonctinea baza-emitor polarizata invers si jonctinea baza-colectotor polarizata direct. |
|
Ecuatiile de mai jos reprezinta modelul matematic al unui tranzistor bipolar care lucreaza: |
|
iC=iC(vBE, vCE) iB=iB(vBE, vCE) |
|
a) 313f57d in regim dinamic de semnal mare; b) 313f57d in regim cvasistatic de semnal mare; CORECT c) 313f57d in regim dinamic de semnal mic; d) 313f57d in regim cvasistatic de semnal mic. |
|
Ecuatiile de mai jos reprezinta modelul matematic al unui tranzistor bipolar care lucreaza: |
|
|
|
a) 313f57d in regim dinamic de semnal mare; b) 313f57d in regim cvasistatic de semnal mare; c) 313f57d in regim dinamic de semnal mic; d) 313f57d in regim cvasistatic de semnal mic. CORECT |
|
Ecuatiile de mai jos reprezinta modelul matematic al unui tranzistor bipolar care lucreaza: |
|
|
|
a) 313f57d in regim dinamic de semnal mare; b) 313f57d in regim cvasistatic de semnal mare; c) 313f57d in regim dinamic de semnal mic; CORECT d) 313f57d in regim cvasistatic de semnal mic. |
|
In conexiunea emitor comun: |
|
a) 313f57d semnalul de intrare se aplica intre baza si emitor iar semnalul de iesire se culege intre colector si emitor; CORECT b) 313f57d semnalul de intrare se aplica intre emitor si baza iar semnalul de iesire se culege intre colector si baza; c) 313f57d semnalul de intrare se aplica intre baza si colector iar semnalul de iesire se culege intre emitor si colector; d) 313f57d semnalul de intrare se aplica intre baza si colector iar semnalul de iesire se culege intre colector si masa. |
|
In conexiunea colector comun: |
|
a) 313f57d semnalul de intrare se aplica intre baza si emitor iar semnalul de iesire se culege intre colector si emitor; b) 313f57d semnalul de intrare se aplica intre emitor si baza iar semnalul de iesire se culege intre colector si baza; c) 313f57d semnalul de intrare se aplica intre baza si colector iar semnalul de iesire se culege intre emitor si colector; CORECT d) 313f57d semnalul de intrare se aplica intre baza si colector iar semnalul de iesire se culege intre colector si masa. |
|
In conexiunea baza comuna: |
|
a) 313f57d semnalul de intrare se aplica intre baza si emitor iar semnalul de iesire se culege intre colector si emitor; b) 313f57d semnalul de intrare se aplica intre emitor si baza iar semnalul de iesire se culege intre colector si baza; CORECT c) 313f57d semnalul de intrare se aplica intre baza si colector iar semnalul de iesire se culege intre emitor si colector; d) 313f57d semnalul de intrare se aplica intre baza si colector iar semnalul de iesire se culege intre colector si masa. |
|
La tranzistorul bipolar care lucreaza in regim activ normal, relatia dintre curentul de colector si curentul de baza poate fi suficient de bine aproximata prin: |
|
a) 313f57d CORECT b) 313f57d c) 313f57d d) 313f57d |
|
La trazistorulul bipolar care lucreaza in regim saturat, relatia dintre curentul de colector si curentul de baza poate fi suficient de bine aproximata prin: |
|
a) 313f57d b) 313f57d c) 313f57d CORECT d) 313f57d |
|
La trazistorul bipolar care lucreaza in regim activ normal, relatia dintre curentul de colector si curentul de emitor poate fi suficient de bine aproximata prin: |
|
a) 313f57d b) 313f57d CORECT c) 313f57d d) 313f57d |
|
Care sunt conditiile corecte de polarizare pentru un tranzistor npn folosit ca simplu amplificator? |
|
a) 313f57d baza negativa fata de emitor, colectorul negativ fata de baza; b) 313f57d baza pozitiva fata de emitor, colectorul pozitiv fata de baza; CORECT c) 313f57d baza negativa fata de emitor, colectorul pozitiv fata de baza; d) 313f57d baza pozitiva fata de emitor, colectorul negativ fata de baza. |
|
In regim de blocare |
|
a) 313f57d tranzistorul bipolar se comporta ca un circuit intrerupt CORECT b) 313f57d tranzistorul bipolar se comporta ca un scurt circuit c) 313f57d ca un generator de curent comandat d) 313f57d ca o rezistenta comandata |
|
In regim saturat |
|
a) 313f57d tranzistorul bipolar se comporta ca un circuit intrerupt b) 313f57d tranzistorul bipolar se comporta ca un scurt circuit CORECT c) 313f57d ca un generator de curent comandat d) 313f57d ca o rezistenta comandata |
|
In regim activ normal |
|
a) 313f57d tranzistorul bipolar se comporta ca un circuit intrerupt b) 313f57d tranzistorul bipolar se comporta ca un scurt circuit c) 313f57d ca un generator de curent comandat CORECT d) 313f57d ca o rezistenta comandata |
|
Figura 3 prezinta caracteristica statica de iesire a unui tranzistor bipolar. |
|
Figura 3 |
|
Regiunea activa normala este notata cu: a) 313f57d b) 313f57d 2; CORECT c) 313f57d d) 313f57d nu este prezentata. |
|
Figura 3 prezinta caracteristica statica de iesire a unui tranzistor bipolar. |
|
Regiunea de saturatie este notata cu: a) 313f57d 1; CORECT b) 313f57d c) 313f57d d) 313f57d nu este prezentata. |
|
Figura 3 prezinta caracteristica statica de iesire a unui tranzistor bipolar. |
|
Regiunea de blocare este notata cu: a) 313f57d b) 313f57d c) 313f57d 3; CORECT d) 313f57d nu este prezentata. |
|
In figura 4 este prezentata caracteristica de intrare a unui tranzistor bipolar |
|
Figura 4 |
|
Intre curentul de baza si tensiunea baza emitor exista o relatie: a) 313f57d liniara; b) 313f57d de tip 3/2; c) 313f57d patratica; d) 313f57d exponentiala. CORECT |
|
Figura 5 prezinta modelul unui tranzistor bipolar npn care lucreaza: |
|
Figura 5 |
|
a) 313f57d in regim cvasistatic de semnal mare in regiunea activa normala b) 313f57d in regim cvasistatic de semnal mare in regiunea de saturatie c) 313f57d in regim cvasistatic de semnal mare in regiunea de blocare CORECT d) 313f57d in regim cvasistatic de semnal mare in regiunea activa normala inversata |
|
Figura 6 prezinta modelul unui tranzistor bipolar npn care lucreaza: |
|
Figura 6 |
|
a) 313f57d in regim cvasistatic de semnal mare in regiunea activa normala b) 313f57d in regim cvasistatic de semnal mare in regiunea de saturatie CORECT c) 313f57d in regim cvasistatic de semnal mare in regiunea de blocare d) 313f57d in regim cvasistatic de semnal mare in regiunea activa normala inversata |
|
Figura 7 prezinta modelul unui tranzistor bipolar npn care lucreaza: |
|
Figura 7 |
|
a) 313f57d in regim cvasistatic de semnal mare in regiunea activa normala CORECT b) 313f57d in regim cvasistatic de semnal mare in regiunea de saturatie c) 313f57d in regim cvasistatic de semnal mare in regiunea de blocare d) 313f57d in regim cvasistatic de semnal mare in regiunea activa normala inversata |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in saturatie este: |
|
a) 313f57d si b) 313f57d vBE=VBEsat si vCE=VCEsat CORECT c) 313f57d vBE=const. si iC=iE d) 313f57d vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim activ normal este: |
|
a) 313f57d si b) 313f57d vBE=VBEsat si vCE=VCEsat c) 313f57d vBE=const. si iC≈iE CORECT d) 313f57d vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim de blocare este: |
|
a) 313f57d si CORECT b) 313f57d vBE=VBEsat si vCE=VCEsat c) 313f57d vBE=const. si iC=iE d) 313f57d vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim activ normal este: |
|
a) 313f57d si b) 313f57d vBE=VBEsat si vCE=VCEsat c) 313f57d vBE=const. si CORECT d) 313f57d vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim activ normal este: |
|
a) 313f57d si b) 313f57d vBE=VBEsat si vCE=VCEsat c) 313f57d si CORECT d) 313f57d vBE=VBEsat si vCE= const |
|
Figura 8 prezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 8 |
|
a) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; CORECT c) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
Figura de mai jos reprezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 9 |
|
a) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mare; CORECT b) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
Cum variaza vBE cu cresterea temperaturii (in domeniul normal de variatie al temperaturii ambiante)? |
|
a) 313f57d aproximativ - 20 mV/oC; b) 313f57d aproximativ - 2 mV/oC; CORECT c) 313f57d aproximativ - 200 V/oC; d) 313f57d aproximativ - 20 V/oC. |
|
Figura 10 prezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 10 |
|
a) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. CORECT |
|
Figura 11 prezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 11 |
|
a) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) 313f57d comandat in curent care lucreaza in regim cvasistatic de semnal mic; CORECT d) 313f57d comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 12, determine the operating mode for the transistor. Assume that the resistor has usual values. |
|
Figure 12 |
|
a) 313f57d cut-off region b) 313f57d saturation region c) 313f57d active region CORECT d) 313f57d reverse active region |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 13, determine the operating mode for the transistor. Assume that the resistors have usual values. |
|
Figure 13 |
|
a) 313f57d |
a) 313f57d cut-off region b) 313f57d saturation region CORECT c) 313f57d active region d) 313f57d reverse active region |
This problem treats the problem of the operating modes. For the circuit presented in figure 14, determine the operating mode for the transistor. Assume that the resistor has usual values |
|
Figure 14 |
|
a) 313f57d |
a) 313f57d cut-off region CORECT b) 313f57d saturation region c) 313f57d active region d) 313f57d reverse active region |
This problem treats the problem of the operating modes. For the circuit presented in figure 15, determine the operating mode for the transistors. Assume that the resistors have usual values. |
|
Figure 15 |
|
a) 313f57d |
a) 313f57d cut-off region b) 313f57d saturation region c) 313f57d active region CORECT d) 313f57d reverse active region |
This problem treats the problem of the operating modes. For the circuit presented in figure 16, determine the operating mode for the transistors. Assume that the resistors have usual values. |
|
Figure 16 |
|
a) 313f57d |
a) 313f57d cut-off region b) 313f57d saturation region c) 313f57d active region CORECT d) 313f57d reverse active region |
This problem treats the problem of quiescent point. For the circuit presented in figure17, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 17 |
|
a) 313f57d |
a) 313f57d IC=5.12 mA and VCE=14.66 V b) 313f57d IC=10.24 mA and VCE=7.43 V c) 313f57d IC=10.24 mA and VCE=1.466 V d) 313f57d IC=5.12 mA and VCE=19.88 V CORECT |
This problem treats the problem of quiescent point. For the circuit presented in the figure 18, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 18 |
|
a) 313f57d |
a) 313f57d IC=4 mA and VCE=4.4 V b) 313f57d IC=2 mA and VCE=4.4 V CORECT c) 313f57d IC=4 mA and VCE=2.2 V d) 313f57d IC=2 mA and VCE=2.2 V |
This problem treats the problem of quiescent point. For the circuit presented in figure 19, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 19 |
|
a) 313f57d |
a) 313f57d IC=3.8 mA and VCE=2.6 V b) 313f57d IC=3.8 mA and VCE=5.2 V c) 313f57d IC=1.91mA and VCE=2.6 V d) 313f57d IC=1.91mA and VCE=5.2 V CORECT |
This problem treats the problem of quiescent point. For the circuit presented in figure 20, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 20 |
|
a) 313f57d |
a) 313f57d IC=2 mA and VCE=15 V b) 313f57d IC=2 mA and VCE=7.5 V c) 313f57d IC=1 mA and VCE=15 V CORECT d) 313f57d IC=1 mA and VCE=7.5 V |
This problem treats the problem of quiescent point. For the circuit presented in figure 21, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
|
|
a) 313f57d |
a) 313f57d IC=0.91 mA and VCE=7.1 V b) 313f57d IC=0.91 mA and VCE=14.2 V CORECT c) 313f57d IC=1.8 mA and VCE=7.1 V d) 313f57d IC=1.8 mA and VCE=14.2 V |
This problem treats the problem of quiescent point. For the circuit presented in figure 22, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistors. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 22 |
|
a) 313f57d IC1=2 mA and VCE1=13 V IC2=2 mA and VCE2=13 V b) 313f57d IC1=2 mA and VCE1=15 V IC2=2 mA and VCE2=26 V c) 313f57d IC1=1 mA and VCE1=0.7 V IC2=1 mA and VCE2=26 V d) 313f57d IC1=1 mA and VCE1=0.7 V IC2=2 mA and VCE2=20 V CORECT |
|