PROBLEME
Problema
Ce conditie trebuie sa indeplineasca vectorii , , , pentru a forma un triunghi?
Problema
Sa se demonstreze ca se poate construi un triunghi ale carui laturi sunt egale si paralele cu medianele unui trunghi dat ABC.
Solutie:
Notam mijloacele laturilor BC, CA, AB cu A', B', C'. Se exprima vectorii care reprezinta medianele AA', BB 424e46e ', CC' in functie de vectorii , ,
Fig.1.
Permutam circular → →→ si obtinem:
Deci, se poate construi un triunghi.
Pozitia unui punct P din spatiu poate fi determinata de vectorul , a carui origine este un punct dat O si a carui extrremitate este punctul P. Vectorul se numeste raza vectoare a punctului P in raport cu punctul O si o vom nota cu . Vom scrie, pe scurt, P().
Problema
Se cere sa se gaseasca raza vectoare a mijlocului C al segmentului AB, cunoscand punctele A(1) si B(2)
Solutie:
Fig.2.
Produsul vectorial
Se cunosc relatiile:
Rezulta:
2. Vectori paraleli
Problema
Sa se demonstreze ca:
Solutie:
Se aduna cele doua relatii de mai sus si demonstratia este incheiata.
Problema
Sa se gaseasca vectorul situat în planul Oyz, de lungime egala cu 10 si perpendicular pe vectorul
Solutie:
Vectorul cerut fiind în planul Oyz are bx = 0.
Putem scrie relatiile:
Modulul
Deoarece cei doi vectori sunt perpendiculari înseamna ca produsul lor scalar este nul
Avem de rezolvat urmatorul sistem de ecuatii
Rezulta:
Produsul mixt
Daca , atunci cei trei vectori sunt coplanari
Dublul produs vectorial
Proiectia pe axa Ox este:
Adunam si scadem în relatia de mai sus termenul axbxcx si obtinem:
Scriem proiectiile si pe celelalte doua axe, le însumam si obtinem:
Divergenta vectorului este egala cu fluxul vectorului prin suprafata unui volum elementar care înconjoara punctul considerat raportat la unitatea de volum.
Fluxul unui vector printr-o suprafata închisa este egal cu integrala de volum din divergenta vectorului
Consideram câmpul vitezelor unui fluid real incompresibil. În acest caz volumul fluidului care trece printr-o anumita suprafata va fi întotdeauna egal cu volumul fluidului care intra, fluxul total fiind nul, de aceea
Ecuatia de mai sus se numeste în hidrodinamica ecuatia de continuitate a unui fluid incompresibil. Aceste câmpuri se numesc câmpuri fara izvoare, solenoidale sau tubulare.
Problema
Se da vectorul
si se cere sa se determine divergenta sa
Solutie:
Problema
Sa se demonstreze ca div grad φ = Δφ
Solutie:
Ecuatia lui Laplace
Δφ = 0
Problema
Se cere sa se demonstreze ca
Solutie:
Scriem si relatiile pentru proiectiile pe celelalte doua axe si le însumam.
Probleme
Se cere sa se calculeze gradientul urmatoarelor functii:
1)
2)
Solutie:
Derivata unui vector în raport cu alt vector
Formam produsul scalar dintre vectorul
si vectorul simbolic . Obtinem:
Rezulta:
Vectori variabili
Vectorul este o functie continua de t
Pentru mai multe valori ale variabilei t extremitatea vectorului descrie o curba care se numeste hodograful vectorului .
Hodograful unui vector este locul geometric al extremitatilor vectorului care pastreaza originea.
Derivata unui vector
Viteza unui punct mobil este derivata razei sale vectoare în raport cu timpul
Directia derivatei unui vector coincide cu directia tangentei la hodograful vectorului.
Vectorul acceleratie:
Proiectia unui vector pe o directie data. Componentele unui vector. Sistem de coordonate
direct si invers.
Alegem o directie oarecare caracterizata prin vectorul unitar . Se considera un vector .
Definitie:
Se numeste proiectia au a vectorului pe directia , lungimea segmentului A'B' determinat pe o dreapta oarecare paralela cu . Proiectia se ia cu semnul plus sau minus, dupa cum A'B' are acelasi sens sau sens opus cu (fig.3).
a) b)
Fig.3
au = a.cos(φ)
sau
au = a.cos(π-φ)
Proiectia vectorului pe directia poate fi considerata ca un vector u
u= au. =a.cos(φ).
Teorema:
Proiectia sumei geometrice a mai multor vectori pe o directie oarecare este egala cu suma algebrica a proiectiilor vectorilor componenti pe aceasta directie
Consideram trei vectori unitari perpendiculari între ei, orientati dupa cele trei axe ale unui sistem Oxyz de coordonate rectangulare. Acesti vectori unitari se numesc vectori fundamentali sau versori si se noteaza cu , , .
Un vector oarecare se descompune dupa vectorii , , astfel
Proiectiile ax, ay, az se numesc coordonatele rectangulare sau componentele vectorului . Aceste coordonate sunt date de expresiile:
Lungimea vectorului se determina ca diagonala unui paralelipiped rectangular, dupa teorema lui Pitagora
Directia vectorului se obtine cu ajutorul expresiilor
Avem adevarata relatia:
Exemplu din statica
Rezultanta mai multor forte care actioneaza asupra unui punct material se exprima prin suma algebrica
Proiectia rezultantei pe o directie oarecare este egala cu suma proiectiilor tuturor fortelor pe aceeasi directie
Daca vom nota proiectiile fortelor pe axele x, y, z cu Xi, Yi, Zi, atunci proiectiile rezultantei vor fi:
Rx = X1+ X2+ .+Xn; Ry = Y1+ Y2+ .+Yn; Rz = Z1+ Z2+ .+Zn
Marimea fortei si directia sunt date de formulele:
Daca punctul asupra caruia actioneaza un sistem de forte se afla în repaus, atunci si reciproc.
Egalitatea este echivalenta cu urmatoarele egalitati:
Problema
Asupra unui punct actioneaza trei forte ale caror proiectii pe axele de coordonate rectangulare sunt:
X1 = 1, Y1 = 2, Z1 = 3; X2 = -2, Y2 = 3, Z2 = -4; X3 = 3, Y3 = -4, Z3 = 5
Se cere sa se determine marimea si directia rezultantei.
Solutie:
Produs vectorial
Problema
Se cere sa se demonstreze expresia
Solutie:
Adunam cele doua expresii de mai sus si obtinem rezultatul cerut.
Identitatea Euler - Lagrange
Problema
Se cere sa se calculeze expresia
Solutie:
Problema
Se cere sa se gaseasca aria paralelogramului ale carui laturi sunt vectorii:
Solutie:
Se înmultesc vectorial cei doi vectori si se tine seama de relatiile:
si de relatiile:
Rezulta:
si aria este egala cu
Problema
Se cere sa se gaseasca vectorul situat în planul yz, de lungime egala cu 10 si perpendicular cu vectorul
Solutie:
Sa notam vectorul necunoscut cu v
Avem relatiile:
Dezvoltam relatia de mai sus si obtinem:
Se rezolva sistemul de mai sus si se obtine solutia
Problema
Sa se demonstreze ca ecuatia cu diferentiale totale
2zxdx+2zydy-)x2+y2)dz = 0
este complet integrabila si sa se determine solutia generala
Solutie:
Consideram câmpul vectorial
si calculam :
Liniile vectoriale ale campului sunt date de urmatorul sistem de ecuatii diferentiale
dz = 0; z = c1
4xdx = -4ydy; xdx = -y dy
Rezulta:
Problema:
Se cere sa se determine liniile vectoriale si suprafetele de câmp care contin curbele specificate
Curba C: xy =1; z =1
Solutie:
Formam combinatii liniare în sistemul de mai sus în vederea rezolvarii simple
(x+y)d(x+y) = (z+1)dz
(x-y)d(x-y)=(z-1)dz
Ecuatiile liniilor de câmp sunt:
Pentru a determina suprafetele de câmp la sistemul de ecuatii de mai sus adaugam ecuatiile
xy = 1
z = 1
Înlocuim z = 1 în sistemul de mai sus si obtinem:
Scadem între ele ecuatiile de mai sus si obtinem:
4xy = c1-c2+2
Dar xy = 1 si avem
c1-c2+2 = 4; c1-c2 = 2
Suprafata de câmp este data de expresiile:
Problema:
Sa se demonstreze ca urmatorul câmp vectorial este irotational
Solutie:
Problema:
Se cere sa se demonstreze ca urmatoarele doua câmpuri vectoriale sunt solenoidale
1.
2.
Demonstratia se face calculând divergenta care trebuie sa fie egala zero.
Problema:
Se da vectorul
Sa se arate ca
Problema:
Se cere sa se gaseasca gradientul lui r, r fiind distanta punctului M fata de un punct A considerat ca origine(fig.6).
Fig.6.
Alegem ca sistem de referinta al functiei r un sistem de coordonate carteziene rectangulare cu originea într-un punct arbitrar O, diferit de punctul A.
Functia r are expresia:
Derivam functia r în raport cu x si obtinem:
Analog obtinem:
Înmultim relatiile de mai sus cu , le adunam si obtinem:
Problema
Consideram un câmp electrostatic produs de n sarcini electrice punctiforme q1, q2, .,qn. Se cere sa se determine gradientul functiei
unde rk sunt distantele dintre punctul considerat M si punctele Ak în care sunt situate sarcinile punctiforme.
Solutie:
Folosim formulele de mai sus si obtinem:
Problema
Se cere sa se calculeze gradientul urmatorului camp scalar
si sa se determine punctele in care acesta este perpendicular pe axa Ox.
Solutie:
Sfera:
Problema
Se cere sa se determine gradientul razei vectoare
Solutie:
Problema
Se cere sa se determine
Solutie:
Dar, expresia produsului scalar al celor doi vectori este:
Determinam componentele vectorului gradient
Înmultim relatiile de mai sus cu , le adunam si obtinem:
Problema
Se cere sa se determine grad r2.
Solutie:
Dar,
Linii de câmp
Se cere sa se determine liniile de câmp ale câmpului vectorial definit de vectorii:
1.
Solutie:
Rezulta:
2.
Solutie:
3.
Solutie:
|