ALTE DOCUMENTE |
Tabel cu integrale nedefinite
Functia elementara |
Integrala functiei |
f: R& 737y2413h #8594;R, f(x)=;nN |
∫dx=()/(n+1)+c |
f: (0,)→R, f(x)=;aR\ |
∫dx=()/(a+1)+c |
f: R& 737y2413h #8594;R, f(x)=;a\ |
∫dx=()/(ln a)+c |
f: (0,)→R, f(x)=1/x |
1/x)dx=ln|x|+c |
f:(-,-a)U(a,)→R, f(x)=1/();a<>0 |
[1/()]dx=(a/2)[ln|(x-a)/(x+a)|]+c |
f: R& 737y2413h #8594;R, f(x)=1/();a<>0 |
[1/()]dx=(1/a)[arctg(x/a)]+c |
f: R& 737y2413h #8594;R, f(x)=sin x |
sin x)dx=-cos x+c |
f: R& 737y2413h #8594;R, f(x)=cos x |
cos x)dx=sin x+c |
f: R\→R, f(x)=1/ x |
1/ x)dx=tg x+c |
f: R\→R, f(x)=1/ x |
1/ x)dx=-ctg x+c |
f: R\→R, f(x)=tg x |
tg x)dx=-ln|cos x|+c |
f: R\→R, f(x)=ctg x |
ctg x)dx=ln|sin x|+c |
f: R& 737y2413h #8594;R, f(x)=1/;a<>0 |
1/)dx=ln(x+)+c |
f: R\(-,-a)U(a,)→R, f(x)=1/ |
(1/)dx=ln|(x+)|+c |
f: R\(-,-a)U(a,)→R, f(x)=1/ |
∫(1/)dx=arcsin(x/a)+c |
|