Tranzistorul bipolar - grila
|
Figura 1 prezinta simbolul unui |
|
Figura 1 |
|
a) si b) vBE=VBEsat si vCE=VCEsat c) vBE=const. si iC=iE d) vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim activ normal este: |
|
a) si b) vBE=VBEsat si vCE=VCEsat c) vBE=const. si iC iE d) vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim de blocare este: |
|
a) si b) vBE=VBEsat si vCE=VCEsat c) vBE=const. si iC=iE d) vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim activ normal este: |
|
a) si b) vBE=VBEsat si vCE=VCEsat c) vBE=const. si d) vBE=VBEsat si vCE= const |
|
Modelul matematic aproximativ al unui unui tranzistor bipolar npn care lucreaza in regim activ normal este: |
|
a) si b) vBE=VBEsat si vCE=VCEsat c) . si d) vBE=VBEsat si vCE= const |
|
Figura 8 prezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 8 |
|
a) comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
Figura de mai jos reprezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 9 |
|
a) comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
Cum variaza vBE cu cresterea temperaturii (in domeniul normal de variatie al temperaturii ambiante)? |
|
a) aproximativ - 20 mV/oC; b) aproximativ - 2 mV/oC; c) aproximativ - 200 V/oC; d) aproximativ - 20 V/oC. |
|
Figura 10 prezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 10 |
|
a) comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
Figura 11 prezinta una dintre schemele echivalente ale unui tranzistor bipolar npn |
|
Figura 11 |
|
a) comandat in curent care lucreaza in regim cvasistatic de semnal mare; b) comandat in tensiune care lucreaza in regim cvasistatic de semnal mare; c) comandat in curent care lucreaza in regim cvasistatic de semnal mic; d) comandat in tensiune care lucreaza in regim cvasistatic de semnal mic. |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 12, determine the operating mode for the transistor. Assume that the resistor has usual values. |
|
Figure 12 |
|
a) cut-off region b) saturation region c) active region d) reverse active region |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 13, determine the operating mode for the transistor. Assume that the resistors have usual values. |
|
Figure 13 |
a) |
a) cut-off region b) saturation region c) active region d) reverse active region |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 14, determine the operating mode for the transistor. Assume that the resistor has usual values |
|
Figure 14 |
a) |
a) cut-off region b) saturation region c) active region d) reverse active region |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 15, determine the operating mode for the transistors. Assume that the resistors have usual values. |
|
Figure 15 |
a) |
a) cut-off region b) saturation region c) active region d) reverse active region |
|
This problem treats the problem of the operating modes. For the circuit presented in figure 16, determine the operating mode for the transistors. Assume that the resistors have usual values. |
|
Figure 16 |
a) |
a) cut-off region b) saturation region c) active region d) reverse active region |
|
This problem treats the problem of quiescent point. For the circuit presented in figure17, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 17 |
a) |
a) IC=5.12 mA and VCE=14.66 V b) IC=10.24 mA and VCE=7.43 V c) IC=10.24 mA and VCE=1.466 V d) IC=5.12 mA and VCE=19.88 V |
|
This problem treats the problem of quiescent point. For the circuit presented in the figure 18, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 18 |
a) |
a) IC=4 mA and VCE=4.4 V b) IC=2 mA and VCE=4.4 V c) IC=4 mA and VCE=2.2 V d) IC=2 mA and VCE=2.2 V |
|
This problem treats the problem of quiescent point. For the circuit presented in figure 19, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 19 |
a) |
a) IC=3.8 mA and VCE=2.6 V b) IC=3.8 mA and VCE=5.2 V c) IC=1.91mA and VCE=2.6 V d) IC=1.91mA and VCE=5.2 V |
|
This problem treats the problem of quiescent point. For the circuit presented in figure 20, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 20 |
a) |
a) IC=2 mA and VCE=15 V b) IC=2 mA and VCE=7.5 V c) IC=1 mA and VCE=15 V d) IC=1 mA and VCE=7.5 V |
|
This problem treats the problem of quiescent point. For the circuit presented in figure 21, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistor. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure21 |
a) |
a) IC=0.91 mA and VCE=7.1 V b) IC=0.91 mA and VCE=14.2 V c) IC=1.8 mA and VCE=7.1 V d) IC=1.8 mA and VCE=14.2 V |
|
This problem treats the problem of quiescent point. For the circuit presented in figure 22, determine the quiescent point (IC and VCE). Assume that and VBE=0.7V for the transistors. One considers that the current is measured in mA, the voltage in V and the resistance in K. |
|
Figure 22 |
|
a) IC1=2 mA and VCE1=13 V IC2=2 mA and VCE2=13 V b) IC1=2 mA and VCE1=15 V IC2=2 mA and VCE2=26 V c) IC1=1 mA and VCE1=0.7 V IC2=1 mA and VCE2=26 V d) IC1=1 mA and VCE1=0.7 V IC2=2 mA and VCE2=20 V |
|